Lois de reproduction choisies

Lois de reproduction choisies#

1import matplotlib.pyplot as plt
2from src.code.simulation.probability_distributions import (
3    create_distributions,
4    create_distributions_df,
5    plot_distribution,
6)
7from src.config.config import seed
8from src.utils.utils import init_notebook
1init_notebook(seed)

Résumé des lois#

1distributions = create_distributions()
1df_distribution = create_distributions_df()
2df_distribution
Loi de reproduction Espérance Variance Lambda théorique loi exponentielle Z_n / n
0 Poisson (λ = 1) 1 1.00000 2.000000
1 Uniforme {0, 1, 2} 1 0.66667 3.000000
2 Binomiale (n=2, p=1/2) 1 0.50000 4.000000
3 Binomiale (n=10, p=1/10) 1 0.90000 2.222222
4 Binomiale (n=50, p=1/50) 1 0.98000 2.040816
5 BĂȘta-Binomiale (n=2, α=3, ÎČ=3) 1 0.57143 3.500000
6 BĂȘta-Binomiale (n=5, α=5, ÎČ=20) 1 0.92308 2.166667
7 BĂȘta-Binomiale (n=3, α=5, ÎČ=10) 1 0.75000 2.666667
8 BĂȘta-Binomiale (n=10, α=5, ÎČ=45) 1 1.05882 1.888889
9 Négative Binomiale (n=1, p=0.5) 1 2.00000 1.000000
10 Négative Binomiale (n=10, p=10/11) 1 1.10000 1.818182
11 Hyper-Géométrique (N=10, n=2, p=0.5) 1 0.44444 4.500000
12 Hyper-Géométrique (N=100, n=10, p=0.1) 1 0.81818 2.444444
1df_distribution.to_csv("data/distributions.csv", index=False)

Histogramme des lois#

 1for name, distribution in distributions.items():
 2    plt.figure(figsize=(8, 8))
 3    plt.title(
 4        f"{name}\nMoyenne = {distribution.mean() : .3f}\nVariance = {distribution.var() : .3f}",
 5    )
 6    plot_distribution(distribution)
 7
 8    filename = name.replace("=", "").replace("/", "")
 9    plt.savefig(f"data/plots/distribution/histogram/{filename}.png")
10
11    plt.show()
../_images/605173c723fe7e86d61467d0af788f9ba4b6a87749922b52a518d107686eb7a3.png ../_images/4af683ee1a49a210c7a41cb52128904e5cad5821a4f55766fef099ec484a082e.png ../_images/a1b73e5d1ecad4a1d0bd37c402aac48e3160a2081f1ab645a4d240d65465dc8c.png ../_images/03035174e5fd9a297ee7e385a84ca6033d53527bd8c970068cc227f93dbea729.png ../_images/15768009a7137c694a08da9bc87669cb7aed088f5381e6d929adfe3260a5c009.png ../_images/d014c21638af5681e4ec1ad956bfcb5756770f3431fbc0a2cdfe9837de3874d2.png ../_images/0f9bc17ff8836407769d43f1525b319d433bf7a9c85c8571506200cd5dddc2d9.png ../_images/a6f26cc7185d032acc10f10a6f3160c1569302c8bd6438a0e02a684eed53f2e9.png ../_images/167da7d2fbe863cd23e06005b668c5c57c2b28233a3bbf0514ca71b674ad8774.png ../_images/950cb83a4c173613a26fff9c4541b668a8a8bc48331d89f3fb974e4576cd43f2.png ../_images/aa8ce9c606d9e31c3cc04694f60faaf4cc9d6ef89fc746d79a2edc1dbe37357c.png ../_images/babdf939ff87a8ff86cdb53c1ac24414645a592fad62d6e5d05fd093603cebc8.png ../_images/8f2dffb4e0bf64d18124803b7bf851dc330a806fd9065d2d2be0ae9bbc3abd27.png